Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.073
Filtrar
1.
J Am Chem Soc ; 146(15): 10293-10298, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569597

RESUMO

Fractionating and characterizing target samples are fundamental to the analysis of biomolecules. Extracellular vesicles (EVs), containing information regarding the cellular birthplace, are promising targets for biology and medicine. However, the requirement for multiple-step purification in conventional methods hinders analysis of small samples. Here, we apply a DNA origami tripod with a defined aperture of binders (e.g., antibodies against EV biomarkers), which allows us to capture the target molecule. Using exosomes as a model, we show that our tripod nanodevice can capture a specific size range of EVs with cognate biomarkers from a broad distribution of crude EV mixtures. We further demonstrate that the size of captured EVs can be controlled by changing the aperture of the tripods. This simultaneous selection with the size and biomarker approach should simplify the EV purification process and contribute to the precise analysis of target biomolecules from small samples.


Assuntos
Biotecnologia , Fracionamento Celular , DNA , Exossomos , Nanotecnologia , DNA/química , Exossomos/química , Exossomos/imunologia , Nanotecnologia/métodos , Fracionamento Celular/métodos , Anticorpos/imunologia , Biomarcadores/análise , Biotecnologia/métodos , Microscopia de Fluorescência , Imagem Individual de Molécula
2.
Methods Mol Biol ; 2790: 405-416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649583

RESUMO

Antibodies are a valuable research tool, with uses including detection and quantification of specific proteins. By using peptide fragments to raise antibodies, they can be designed to differentiate between structurally similar proteins, or to bind conserved motifs in divergent proteins. Peptide sequence selection and antibody validation are crucial to ensure reliable results from antibody-based experiments. This chapter describes the steps for the identification of peptide sequences to produce protein- or isoform-specific antibodies using recombinant technologies as well as the subsequent validation of such antibodies. The photosynthetic protein Rubisco activase is used as a case study to explain the various steps involved and key aspects to take into consideration.


Assuntos
Anticorpos , Isoformas de Proteínas , Anticorpos/química , Anticorpos/imunologia , Anticorpos/metabolismo , Fotossíntese , Sequência de Aminoácidos , Proteínas de Plantas/metabolismo
3.
JCI Insight ; 9(8)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470489

RESUMO

Allergic airway disease (AAD) is an example of type 2 inflammation that leads to chronic airway eosinophilia controlled by CD4 Th2 cells. Inflammation is reinforced by mast cells and basophils armed with allergen-specific IgE made by allergen-specific B2 B cells of the adaptive immune system. Little is known about how AAD is affected by innate B1 cells, which produce natural antibodies (NAbs) that facilitate apoptotic cell clearance and detect damage- and pathogen-associated molecular patterns (DAMPS and PAMPS). We used transgenic mice lacking either B cells or NAbs in distinct mouse models of AAD that require either DAMPS or PAMPS as the initial trigger for type 2 immunity. In a DAMP-induced allergic model, driven by alum and uric acid, mouse strains lacking B cells (CD19DTA), NAbs (IgHEL MD4), or all secreted antibodies (sIgm-/-Aid-/-) displayed a significant reduction in both eosinophilia and Th2 priming compared with WT or Aid-/- mice lacking only germinal center-dependent high-affinity class-switched antibodies. Replenishing B cell-deficient mice with either unimmunized B1 B cells or NAbs during sensitization restored eosinophilia, suggesting that NAbs are required for licensing antigen-presenting cells to prime type 2 immunity. Conversely, PAMP-dependent type 2 priming to house dust mite or Aspergillus was not dependent on NAbs. This study reveals an underappreciated role of B1 B cell-generated NAbs in selectively driving DAMP-induced type 2 immunity.


Assuntos
Linfócitos B , Animais , Camundongos , Linfócitos B/imunologia , Células Th2/imunologia , Modelos Animais de Doenças , Camundongos Transgênicos , Camundongos Knockout , Imunidade Inata/imunologia , Camundongos Endogâmicos C57BL , Imunoglobulina E/imunologia , Alarminas/imunologia , Anticorpos/imunologia , Hipersensibilidade/imunologia , Eosinofilia/imunologia
4.
PLoS One ; 19(2): e0296737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394128

RESUMO

Due to the unnecessary immune responses induced by therapeutic antibodies in clinical applications, immunogenicity is an important factor to be considered in the development of antibody therapeutics. To a certain extent, there is a lag in using wet-lab experiments to test the immunogenicity in the development process of antibody therapeutics. Developing a computational method to predict the immunogenicity at once the antibody sequence is designed, is of great significance for the screening in the early stage and reducing the risk of antibody therapeutics development. In this study, a computational immunogenicity prediction method was proposed on the basis of AntiBERTy-based features of amino sequences in the antibody variable region. The AntiBERTy-based sequence features were first calculated using the AntiBERTy pre-trained model. Principal component analysis (PCA) was then applied to reduce the extracted feature to two dimensions to obtain the final features. AutoGluon was then used to train multiple machine learning models and the best one, the weighted ensemble model, was obtained through 5-fold cross-validation on the collected data. The data contains 199 commercial therapeutic antibodies, of which 177 samples were used for model training and 5-fold cross-validation, and the remaining 22 samples were used as an independent test dataset to evaluate the performance of the constructed model and compare it with other prediction methods. Test results show that the proposed method outperforms the comparison method with 0.7273 accuracy on the independent test dataset, which is 9.09% higher than the comparison method. The corresponding web server is available through the official website of GenScript Co., Ltd., https://www.genscript.com/tools/antibody-immunogenicity.


Assuntos
Anticorpos , Aprendizado de Máquina , Anticorpos/imunologia , Anticorpos/uso terapêutico
5.
Mar Drugs ; 21(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999374

RESUMO

Diverse candidate antibodies are needed to successfully identify therapeutic and diagnostic applications. The variable domain of IgNAR (VNAR), a shark single-domain antibody, has attracted attention owing to its favorable physicochemical properties. The phage display method used to screen for optimal VNARs loses sequence diversity because of the bias caused by the differential ease of protein expression in Escherichia coli. Here, we investigated a VNAR selection method that combined panning with various selection pressures and next-generation sequencing (NGS) analyses to obtain additional candidates. Drawing inspiration from the physiological conditions of sharks and the physicochemical properties of VNARs, we examined the effects of NaCl and urea concentrations, low temperature, and preheating at the binding step of panning. VNAR phage libraries generated from Japanese topeshark (Hemitriakis japanica) were enriched under these conditions. We then performed NGS analysis and attempted to select clones that were specifically enriched under each panning condition. The identified VNARs exhibited higher reactivity than those obtained by panning without selection pressure. Additionally, they possess physicochemical properties that reflect their respective selection pressures. These results can greatly enhance our understanding of VNAR properties and offer guidance for the screening of high-quality VNAR clones that are present at low frequencies.


Assuntos
Anticorpos , Receptores de Antígenos , Tubarões , Animais , Anticorpos/imunologia , Receptores de Antígenos/imunologia , Tubarões/imunologia , Anticorpos de Domínio Único/imunologia , Japão
6.
Oncoimmunology ; 12(1): 2255041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860278

RESUMO

IMAB362/Zolbetuximab, a first-in-class IgG1 antibody directed against the cancer-associated gastric-lineage marker CLDN18.2, has recently been reported to have met its primary endpoint in two phase 3 trials as a first-line treatment in combination with standard of care chemotherapy in CLDN18.2-positive Her2 negative advanced gastric cancer. Here we characterize the preclinical pharmacology of BNT141, a nucleoside-modified RNA therapeutic encoding the sequence of IMAB362/Zolbetuximab, formulated in lipid nanoparticles (LNP) for liver uptake. We show that the mRNA-encoded antibody displays a stable pharmacokinetic profile in preclinical animal models, mediates CLDN18.2-restricted cytotoxicity comparable to IMAB362 recombinant protein and inhibits human tumor xenograft growth in immunocompromised mice. BNT141 administration did not perpetrate mortality, clinical signs of toxicity, or gastric pathology in animal studies. A phase 1/2 clinical trial with BNT141 mRNA-LNP has been initiated in advanced CLDN18.2-expressing solid cancers (NCT04683939).


Assuntos
Neoplasias Gástricas , Animais , Humanos , Camundongos , Moléculas de Adesão Celular , Claudinas/imunologia , RNA Mensageiro/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Anticorpos/genética , Anticorpos/imunologia
7.
Front Immunol ; 14: 1244373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736100

RESUMO

Introduction: China experienced a record surge of coronavirus disease 2019 cases in December 2022, during the pandemic. Methods: We conducted a randomized, parallel-controlled prospective cohort study to evaluate efficacy and antibody duration after a fourth-dose booster with Ad5-nCoV or inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Results: A total of 191 participants aged ≥18 years who had completed a three-dose regimen of the inactivated SARS-CoV-2 vaccine 6 months earlier were recruited to receive the intramuscular Ad5-nCoV booster or the inactivated SARS-CoV-2 vaccine. The Ad5-nCoV group had significantly higher antibody levels compared with the inactivated vaccine group at 6 months after the fourth vaccination dose. After the pandemic, the breakthrough infection rate for the Ad5-nCoV and the inactivated vaccine groups was 77.89% and 78.13%, respectively. Survival curve analysis (p = 0.872) and multivariable logistic regression analysis (p = 0.956) showed no statistically significant differences in breakthrough infection between the two groups. Discussion: Compared with a homologous fourth dose, a heterologous fourth dose of Ad5-nCoV elicited a higher immunogenic response in healthy adults who had been immunized with three doses of inactivated vaccine. Nevertheless, the efficacy of the two vaccine types was equivalent after the pandemic.


Assuntos
Infecções Irruptivas , Vacinas contra COVID-19 , COVID-19 , Adolescente , Adulto , Humanos , Anticorpos/imunologia , Infecções Irruptivas/epidemiologia , Infecções Irruptivas/imunologia , Infecções Irruptivas/prevenção & controle , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , População do Leste Asiático , Estudos Prospectivos , SARS-CoV-2 , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/uso terapêutico , Eficácia de Vacinas , Imunização Secundária , Anticorpos Antivirais/imunologia , China/epidemiologia , Pandemias/estatística & dados numéricos , Surtos de Doenças/estatística & dados numéricos
9.
Transfus Med ; 33(5): 379-389, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37728214

RESUMO

BACKGROUND: Pre-transfusion testing (PTT) encompasses a set of mandatory laboratory tests performed before red blood cell transfusion. The antibody screen, one component of PTT, commonly includes a 10-20 min incubation. The primary aim of this study was to determine if this period can be reduced when using current immunohematology methodologies. METHODS AND MATERIALS: Antibody screens were performed on reagent samples using Glass or Gel-based column agglutination technologies (CAT) and a solid phase red cell adherence (SPRCA) assay, with incubation periods of 1, 5, 10 and 15 min, and 20 min (SPRCA assay only). For each method, the shortest period producing a minimum of a 1+ reaction with all reagent samples was considered optimal. The sensitivity of each assay using the optimal period was calculated after performing antibody screens on 100 patient samples. RESULTS AND DISCUSSION: It was demonstrated that the incubation period in the SPRCA and Glass CAT systems can be reduced to 5 and 10 min, respectively, while achieving high assay sensitivity (98.9% in both). The incubation period in the Gel CAT system cannot be reduced from 15 min. Significant association between titre and reaction strength was observed for all three screening methods (p < 0.001 for both CAT methods, p = 0.041 for SPRCA). This study demonstrates that the incubation period used in the antibody screen can be reduced when using systems employing the Glass CAT and SPRCA methods, without affecting assay sensitivity. If confirmed, it could result in faster completion of PTT.


Assuntos
Tipagem e Reações Cruzadas Sanguíneas , Eritrócitos , Humanos , Tipagem e Reações Cruzadas Sanguíneas/métodos , Eritrócitos/imunologia , Fatores de Tempo , Sensibilidade e Especificidade , Anticorpos/imunologia
12.
Nanoscale ; 15(28): 12008-12024, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37403617

RESUMO

Biodegradable periodic mesoporous organosilica nanoparticles (nanoPMOs) are widely used as responsive drug delivery platforms for targeted chemotherapy of cancer. However, the evaluation of their properties such as surface functionality and biodegradability is still challenging, which has a significant impact on the efficiency of chemotherapy. In this study, we have applied direct stochastic optical reconstruction microscopy (dSTORM), a single-molecule super-resolution microscopy technique, to quantify the degradation of nanoPMOs triggered by glutathione and the multivalency of antibody-conjugated nanoPMOs. Subsequently, the effect of these properties on cancer cell targeting, drug loading and release capability, and anticancer activity is also studied. Due to the higher spatial resolution at the nanoscale, dSTORM imaging is able to reveal the structural properties (i.e., size and shape) of fluorescent and biodegradable nanoPMOs. The quantification of nanoPMOs' biodegradation using dSTORM imaging demonstrates their excellent structure-dependent degradation behavior at a higher glutathione concentration. The surface functionality of anti-M6PR antibody-conjugated nanoPMOs as quantified by dSTORM imaging plays a key role in prostate cancer cell labeling: oriented antibody is more effective than random ones, while high multivalency is also effective. The higher biodegradability and cancer cell-targeting properties of nanorods conjugated with oriented antibody (EAB4H) effectively deliver the anticancer drug doxorubicin to cancer cells, exhibiting potent anticancer effects.


Assuntos
Nanopartículas , Neoplasias da Próstata , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Anticorpos/química , Anticorpos/imunologia , Porosidade , Dióxido de Silício/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Oxirredução , Propriedades de Superfície , Humanos , Linhagem Celular Tumoral
13.
J Heart Lung Transplant ; 42(10): 1469-1477, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37268050

RESUMO

BACKGROUND: The impact of heart transplant (HT) waitlist candidate sensitization on waitlist outcomes in the US is unknown. METHODS: Adult waitlist outcomes in OPTN (October 2018-September 2022) by calculated panel reactive antibody (cPRA) were modeled to identify thresholds of clinical significance. The primary outcome was the rate of HT by cPRA category (low: 0-35, middle: >35-90, high: >90) assessed using multivariable competing risk analysis (compete: waitlist removal for death or clinical deterioration). The secondary outcome was waitlist removal for death or clinical deterioration. RESULTS: The elevated cPRA categories were associated with lower rates of HT. Candidates in the middle (35-90) and high cPRA categories (>90) had an adjusted 24% lower rate (hazard ratio (HR) 0.86, 95% confidence interval (CI) 0.80-0.92) and 61% lower rate (HR 0.39 95% CI. 0.33-0.47) of HT than the lowest category, respectively. Waitlist candidates in the high cPRA category listed in the top acuity strata (Statuses 1, 2) had increased rates of delisting for death or deterioration compared to those in the low cPRA category (adjusted HR 2.9, 95% CI 1.5-5.5), however, elevated cPRA (middle, high) was not associated with an increased rate of death and delisting when the cohort was considered as a whole. CONCLUSIONS: Elevated cPRA was associated with reduced rates of HT across all waitlist acuity tiers. Among HT waitlist candidates listed at the top acuity strata, the high cPRA category was associated with increased rates of delisting due to death or deterioration. Elevated cPRA may require consideration for critically ill candidates under continuous allocation.


Assuntos
Anticorpos , Insuficiência Cardíaca , Transplante de Coração , Teste de Histocompatibilidade , Histocompatibilidade , Listas de Espera , Adulto , Humanos , Anticorpos/imunologia , Deterioração Clínica , Antígenos HLA/imunologia , Estudos Retrospectivos , Listas de Espera/mortalidade , Insuficiência Cardíaca/cirurgia , Histocompatibilidade/imunologia , Teste de Histocompatibilidade/métodos
15.
J Biol Chem ; 299(7): 104910, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315789

RESUMO

Protein A affinity chromatography is widely used for the large-scale purification of antibodies because of its high yield, selectivity, and compatibility with NaOH sanitation. A general platform to produce robust affinity capture ligands for proteins beyond antibodies would improve bioprocessing efficiency. We previously developed nanoCLAMPs (nano Clostridial Antibody Mimetic Proteins), a class of antibody mimetic proteins useful as lab-scale affinity capture reagents. This work describes a protein engineering campaign to develop a more robust nanoCLAMP scaffold compatible with harsh bioprocessing conditions. The campaign generated an improved scaffold with dramatically improved resistance to heat, proteases, and NaOH. To isolate additional nanoCLAMPs based on this scaffold, we constructed a randomized library of 1 × 1010 clones and isolated binders to several targets. We then performed an in-depth characterization of nanoCLAMPs recognizing yeast SUMO, a fusion partner used for the purification of recombinant proteins. These second-generation nanoCLAMPs typically had a Kd of <80 nM, a Tm of >70 °C, and a t1/2 in 0.1 mg/ml trypsin of >20 h. Affinity chromatography resins bearing these next-generation nanoCLAMPs enabled single-step purifications of SUMO fusions. Bound target proteins could be eluted at neutral or acidic pH. These affinity resins maintained binding capacity and selectivity over 20 purification cycles, each including 10 min of cleaning-in-place with 0.1 M NaOH, and remained functional after exposure to 100% DMF and autoclaving. The improved nanoCLAMP scaffold will enable the development of robust, high-performance affinity chromatography resins against a wide range of protein targets.


Assuntos
Anticorpos , Afinidade de Anticorpos , Cromatografia de Afinidade , Ligantes , Mimetismo Molecular , Engenharia de Proteínas , Proteínas Recombinantes , Anticorpos/química , Anticorpos/imunologia , Anticorpos/metabolismo , Cromatografia de Afinidade/métodos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Hidróxido de Sódio/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Temperatura Alta , Tripsina/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Ligação Proteica
16.
Angew Chem Int Ed Engl ; 62(30): e202306431, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37259239

RESUMO

Proximity-induced chemical reactions are site-specific and rapid by taking advantage of their high affinity and highly selective interactions with the template. However, reactions induced solely by antibody-antigen interactions have not been developed. Herein, we propose a biepitopic antigen-templated chemical reaction (BATER) as a novel template reaction. In BATER, reactive functional groups are conjugated to two antibodies that interact with two epitopes of the same antigen to accelerate the reaction. We developed a method for visualizing the progress of BATER using fluorogenic click chemistry for optimal antibody selection and linker design. The reaction is accelerated in the presence of a specific antigen in a linker length-dependent manner. The choice of the antibody epitope is important for a rapid reaction. This design will lead to various applications of BATER in living systems.


Assuntos
Epitopos , Epitopos/química , Epitopos/imunologia , Anticorpos/química , Anticorpos/imunologia , Antígenos/química , Antígenos/imunologia , Corantes Fluorescentes/química
17.
HLA ; 102(4): 436-448, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37370222

RESUMO

HLA-sensitized patients on the transplant waiting list harbor antibodies and memory B cells directed against allogeneic HLA molecules, which decreases the chance to receive a compatible donor organ. Current desensitization strategies non-specifically target circulating antibodies and B cells, warranting the development of therapies that specifically affect HLA-directed humoral immune responses. We developed Chimeric HLA Antibody Receptor (CHAR) constructs comprising the extracellular part of HLA-A2 or HLA-A3 coupled to CD28-CD3ζ domains. CHAR-transduced cells expressing reporter constructs encoding T-cell activation markers, and CHAR-transduced CD8+ T cells from healthy donors were stimulated with HLA-specific monoclonal antibody-coated microbeads, and HLA-specific B cell hybridomas. CHAR T cell activation was measured by upregulation of T cell activation markers and IFNγ secretion, whereas CHAR T cell killing of B cell hybridomas was assessed in chromium release assays and by IgG ELISpot. HLA-A2- and HLA-A3-CHAR expressing cells were specifically activated by HLA-A2- and HLA-A3-specific monoclonal antibodies, either soluble or coated on microbeads, as shown by CHAR-induced transcription factors. HLA-A2 and HLA-A3 CHAR T cells efficiently produced IFNγ with exquisite specificity and were capable of specifically lysing hybridoma cells expressing HLA-A2- or HLA-A3-specific B-cell receptors, respectively. Finally, we mutated the α3 domain of the CHAR molecules to minimize any alloreactive T-cell reactivity against CHAR T cells, while retaining CHAR activity. These data show proof of principle for CHAR T cells to serve as precision immunotherapy to specifically desensitize (highly) sensitized solid organ transplant candidates and to treat antibody-mediated rejection after solid organ transplantation.


Assuntos
Anticorpos , Linfócitos B , Dessensibilização Imunológica , Transplante de Rim , Anticorpos/genética , Anticorpos/imunologia , Aloenxertos/imunologia , Linfócitos T , Antígeno HLA-A2/metabolismo , Antígeno HLA-A3/metabolismo , Interferon gama/imunologia , Citotoxicidade Imunológica , Linfócitos B/imunologia , Dessensibilização Imunológica/métodos , Estudo de Prova de Conceito , Linhagem Celular , Doadores de Sangue , Humanos
18.
J Immunol Methods ; 518: 113486, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156408

RESUMO

BACKGROUND: The 2019 coronavirus (COVID-19) epidemic, required the development of different diagnostic tests. While reverse transcriptase real-time PCR (RT-PCR) remains the first-line test of choice in acute infection diagnosis, anti-N antibodies serological assays provide a valuable tool to differentiate natural SARS-CoV-2 immunological response from that induced by vaccination, thus the goal of our study was to evaluate three serological tests agreement for these antibodies detection. METHODS: Three anti-N different tests were examined in 74 sera from patients referred or not COVID infection: immunochromatographic rapid test (Panbio™ COVID-19 IgG/IgM Rapid Test Device Abbott, Germany), ELISA kit (NovaLisa® SARS-CoV-2 IgG and IgM NovaTech Immunodiagnostic GmbH, Germany) and ECLIA immunoassay (Elecsys® Anti-SARS-CoV-2 Roche Diagnostics, Manheim, Germany). RESULTS: Qualitative comparison of the three analytical methods revealed a moderate agreement between ECLIA immunoassay and immunochromatographic rapid test (Cohen kappa coefficient κ = 0.564). Correlation analysis indicated weak positive correlation between total Ig (IgT) detected by ECLIA immunoassay and IgG by ELISA test (p < 0.0001), the analysis of ECLIA IgT and IgM ELISA detected, showed no statistical correlation. CONCLUSION: Comparison between of three analytical systems available for anti-N SARS-CoV-2 IgG and IgM antibodies showed a general agreement when compared to detect total and G class immunoglobulins, while doubtful or discordant results have been highlighted for IgT and IgM class. Anyway, all the tests examined provide reliable results to assess the serological status of SARS-CoV-2 infected patients.


Assuntos
COVID-19 , SARS-CoV-2 , SARS-CoV-2/imunologia , Humanos , Anticorpos/imunologia
19.
Cancer Biomark ; 37(2): 85-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37248884

RESUMO

BACKGROUND: Despite its importance in the clinical management of ovarian cancer, the CA125 biomarker - located on the mucin protein MUC16 - is still not completely understood. Questions remain about MUC16's function and structure, specifically the identity and location of the CA125 epitopes. OBJECTIVE: The goal of this study was to characterize the interaction of individual recombinant repeats from the tandem repeat domain of MUC16 with antibodies used in the clinical CA125 II test. METHODS: Using E. coli expression, we isolated nine repeats from the putative antigenic domain of CA125. Amino acid composition of recombinant repeats was confirmed by high-resolution mass spectrometry. We characterized the binding of four antibodies - OC125, M11, "OC125-like," and "M11-like" - to nine recombinant repeats using Western blotting, indirect enzyme-linked immunosorbent assay (ELISA), and localized surface plasmon resonance (SPR) spectroscopy. RESULTS: Each recombinant repeat was recognized by a different combination of CA125 antibodies. OC125 and "OC125-like" antibodies did not bind the same set of recombinant repeats, nor did M11 and "M11-like" antibodies. CONCLUSIONS: Characterization of the interactions between MUC16 recombinant repeats and CA125 antibodies will contribute to ongoing efforts to identify the CA125 epitopes and improve our understanding of this important biomarker.


Assuntos
Anticorpos , Humanos , Anticorpos/imunologia , Proteínas Recombinantes/imunologia , Ensaio de Imunoadsorção Enzimática , Ressonância de Plasmônio de Superfície
20.
Nature ; 616(7957): 563-573, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046094

RESUMO

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Assuntos
Retrovirus Endógenos , Imunoterapia , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/virologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/virologia , Modelos Animais de Doenças , Retrovirus Endógenos/imunologia , Imunoterapia/métodos , Pulmão/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virologia , Microambiente Tumoral , Linfócitos B/imunologia , Estudos de Coortes , Anticorpos/imunologia , Anticorpos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...